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Questions of today

1. (supplement to the proof of Jense formula in the lecture note). Let €2 be a simply connected open subset
of C. Suppose f : {2 — C is a nowhere zero holomorphic function, show that there exits a holomorphic
function g : 2 — C such that f = e9.(log f exists!)

2. Let f : C — C is an entire function, and let n be an integer. Show that there exits an entire g : ) — C
such that f = g" if and only if the orders of zeros are divisible by n.

3. Let f be holomorphic in a region which contains D—R, and let a1, as, - . - , a, be the nonzero zeroes of f

in Dpg. If |z| <R, show that if f has a zero at z = 0 with multiplicity m then
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4. (Poisson integral formula) Let f = u + v be holomorphic in a region which contains D—R, and let
z € Dp. Show that
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Note that by taking real part of the formula, we have
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5. (Poisson-Jensen Formula) Let f be holomorphic in a region which contains D—R, and letai,a2,...,an
be the zeroes of f in Dg. If |2z| <R, and f(z) # 0, show that
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Hints & solutions of today

1. (See page 100 of textbook for more details)First fix a point a € €2, and define g(z) to be the integral of
dlog f = % over a curve from a to z. You then
1. Check g is well-defined.
2. Check g is holomorphic.
3. Check that f exp(—g) is a constant.

4. Modify g to make the constant in (iii) become 1.
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2. The "only if part" is obvious. For the "if part", it would be easy if f = 0. So we may assume f == 0. Fix

a € C with f(a) # 0. Define g by
B 1 f'(z)dz
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where =, is a curve from q to z that does not pass through any of the zeroes of f. As in question 1, we

1. Check g is well-defined outside the zeroes of f. (By using Argument principle this time, note that the
integral without the exponential is not defined)
Check g is holomorphic outside the zeroes of f.

Check that fg " is a constant outside the zeroes of f.
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Modify g to make the constant in (iii) become 1.
5. Using Riemann extension theorem to show that g in fact extends to the whole C.
3. Write f = 2™g with g(0) # 0, then apply the Jensen formula for g.

4. We letw = Reie, and write out the following
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Note that this expression has a zero at w = 0, and a simple pole at w = z. On the other hand, we have
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The rest is to apply residue theorem.
5. Define

Show that
1. Ig(2)! = If(z)l when |z| = R.
2. Since g has no zeroes in Dy, log g exists on Dy by question 1.

3. Apply question 4 for u being the real part of log g.
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